LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2018

16/17/ 18PMT1MC05 - PROBABILITY THEORY AND STOCHASTIC PROCESS

Date: 03-11-2018
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Answer ALL questions:
(a)With usual notations prove that $-1 \leq \gamma_{X Y} \leq 1$.
(OR)
(b) A random variable has the following probability function:

Values of X, x	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0	k	2 k	2 k	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

(i) Find k, (ii) Evaluate $P(X<6)$ (iii) If $P(X \leq a)>\frac{1}{2}$, find the minimum value of a. (5)
(c) For the joint probability distribution of two random variables X and Y given below:

Y	1	2	3	Total
X	4			
1	$4 / 36$	$3 / 36$	$2 / 36$	$10 / 36$
2	$1 / 36$			$9 / 36$
3	$1 / 36$	$3 / 36$	$3 / 36$	$8 / 36$
4	$2 / 36$			$9 / 36$
	$5 / 36$	$1 / 36$	$1 / 36$	
	$1 / 36$			
	$1 / 36$	$2 / 36$	$1 / 36$	
	$5 / 36$			
Total	$11 / 36$	$9 / 36$	$7 / 36$	1
	$9 / 36$			

Find (i) the marginal distributions of X and Y.
(ii) Conditional distribution of X given the value of $Y=1$ and that of Y given the value of $X=2$.
(OR)
(d) Let (X, Y) be a two dimensional random variable uniformly distributed over the triangular region bounded by $y=0, x=3$ and $y=\frac{4}{3} x$. Obtain the correlation coefficient between X and Y. (15)
2. (a) State and prove Chebychev's theorem.
(5)
(OR)
(b) For the geometric distribution $p(x)=2^{-x} ; x=1,2,3, \ldots$, prove that Chebychev's inequality gives $P\{|X-2| \leq 2\}>\frac{1}{2}$, while the actual probability is $\frac{15}{16}$.
(5)
(c) State and prove two Borel-Cantelli Lemmas.

(OR)

(d) State and prove De-Moivre's Laplace theorem.
3. (a)Prove that the maximum likelihood estimate of the parameter α of a population having density function $\frac{2}{\alpha^{2}}(\alpha-x), 0<x<\alpha$, for a sample of unit size is $2 x$, x being the sample value. Show also that the estimate is biased.
(b) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample from $N\left(\mu, \sigma^{2}\right)$ populations. Find sufficient estimators for μ and σ^{2}.
(c) If T_{1} and T_{2} are M. V. U. estimators for $\gamma(\theta)$, then prove that $T_{1}=T_{2}$, almost surely.
(OR)
(d) Let T_{1} and T_{2} be unbiased estimators of $\gamma(\theta)$ with efficiencies e_{1} and e_{2} respectively and $\quad \rho=\rho_{0}$ be the correlation between them. Then prove that $\sqrt{e_{1} e_{2}}-\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)} \leq \rho \leq \sqrt{e_{1} e_{2}}+\sqrt{\left(1-e_{1}\right)\left(1-e_{2}\right)}$.
4. (a) Write any three advantages and drawbacks of Non-Parametric Methods over parametric methods.

(OR)

(b) If $x \geq 1$ is the critical region for testing $H_{0}: \theta=2$ against the alternative $\theta=1$, on the basis of the single observation from the population, $f(x, \theta)=\theta \exp (-\theta x), 0 \leq x<\infty$, obtain the values of type I and type II errors.
(c) (i) Let p be the probability that a coin will fall head in a single toss in order to test
$H_{0}: p=\frac{1}{2}$ against $H_{1}: p=\frac{3}{4}$. The coin is tossed 5 times and H_{0} is rejected if more than 3 heads are obtained. Find the probability of type I error and power of the test.
(ii) Write down the procedure for Sign test.

(OR)

(d) State and prove Neyman-Pearson Lemma.
5. (a) Explain the four different classes of stochastic processes.

(OR)

(b) Write short notes on Marko Process and Stationary Process.
(c) (i) Explain Birth and Death processes.
(ii) If the initial vector $\boldsymbol{P}^{(0)}$ is given, then prove that the $n-$ step transition probabilities are $\boldsymbol{P}^{(n)}=\boldsymbol{P}^{(0)} \boldsymbol{P}^{n}, n=1,2, \ldots$.
(OR)
(d) State and prove Chapman-Kolmogorov relation in Markov chain.

