K	(C250)	t	I	M.S	c. D	EGRE	E EX	XAMII	NATIC	N – M	атнемат	TICS
FIRST SEMESTER – NOVEMBER 2018												
16/17/18PMT1MC05 – PROBABILITY THEORY AND STOCHASTIC PROCESS												
	Date: 03-11-2018 Time: 01:00-04:00			Dept. No.								Max. : 100 Marks
							Answ	ver AL	L ques	tions:		
1.	. (a)With usual notations prove that $-1 \le \gamma_{XY} \le 1$. (5)											(5)
(UK) (b) A random variable has the following probability function:												
	< /	Values of 2	X, x	0	1	2	3	4	5	6	7	
		P(x)		0	k	2k	2k	3k	<i>k</i> ²	2 <i>k</i> ²	$7k^2 + k$	
	(i) F	ind <i>k</i> , (ii) Ev	valuate	P(X	< 6)(iii) If	P(X	$\leq a$	$>\frac{1}{2}, \frac{1}{2}$	find the	minimum	value of <i>a</i> . (5)
		, .	1		1	C .		1		1 •• 7	1 17 .	
((c) For the	e joint proba	ibility d	listri	butio	on of tw	$\frac{1}{2}$	ndom	variab 2	les X an Total	nd Y given	below:
			I V				2		5	Total		
				4	126		2/26		2/26	10/26	_	
				4,	20		5/30		2/30	10/30		
			2	1	/30		2120		2/26	9/30		
			3		/30		3/30		3/30	8/30		
			4	2	/36		1/00		1/06	9/36		
				5,	/36		1/36		1/36			
				1,	/36							
				1,	/36		2/36		1/36			
				5,	/36						_	
			Total	1	1/36	(9/36		7/36	1		
				9	/36							
	Find (i)	the margina	l distrib	outio	ns of	X and	<i>Y</i> .					
	(ii) Con	ditional distr	ribution	of 2	X giv	en the	value	of Y	= 1 a	nd that o	of Y given	the value of $X = 2$.
												(15)
	(d) Let (X y = 0, x = (15)	(, Y) be a two = 3 and	y dimension $y = \frac{4}{3}$	$\frac{1}{x}$	il rano Ob	dom va tain	riable the	(OR unifo cor) rmly di relatio	stribute n coe	d over the t efficient	riangular region bounded by between X and Y.
2.	(a) State a	and prove Che	ebychev	's th	eoren	n.						(5)
			- yenev	5 (1)	201 01	•••		(OR)			(3)
	(b) For the inequality	e geometric d gives P{ X -	listributi - 2 $ \le 2$	ion	$p(x) = \frac{1}{2}$, wh	$= 2^{-x};$	x = 1	,2,3, proba	, provo ability i	e that Ch s $\frac{15}{16}$.	nebychev's	(5)

((c) State and prove two Borel-Cantelli Lemmas.	(15)
	(OR)	
((d) State and prove De-Moivre's Laplace theorem.	(15)
3. (<u>-</u> k	a)Prove that the maximum likelihood estimate of the parameter α of a population havin $\frac{2}{x^2}(\alpha - x), 0 < x < \alpha$, for a sample of unit size is $2x$, x being the sample value. Show als biased. (5)	ng density function o that the estimate is
((b) Let $x_1, x_2,, x_n$ be a random sample from $N(\mu, \sigma^2)$ populations. Find sufficient	ıt
e	estimators for μ and σ^2 .	(5)
	(c) If T_1 and T_2 are M. V. U. estimators for $\gamma(\theta)$, then prove that $T_1 = T_2$, almost	surely. (15)
	(OR)	
(c corr	d) Let T_1 and T_2 be unbiased estimators of $\gamma(\theta)$ with efficiencies e_1 and e_2 respective relation between them. Then prove that $\sqrt{e_1e_2} - \sqrt{(1-e_1)(1-e_2)} \le \rho \le \sqrt{e_1e_2} + \sqrt{e_1e_2} + \sqrt{(1-e_1)(1-e_2)} \le \rho \le \sqrt{e_1e_2} + \sqrt{e_1e_2} + \sqrt{(1-e_1)(1-e_2)} \le \rho \le \sqrt{e_1e_2} + \sqrt{e_1e_2} + \sqrt{(1-e_1)(1-e_2)} \le \rho \le \sqrt{(1-e_1)(1-e_2)} \le (1-e_1$	ely and $\rho = \rho_0$ be the $\overline{(1-e_1)(1-e_2)}.$ (15)
4. (a) Write any three advantages and drawbacks of Non-Parametric Methods over p methods.	arametric (5)
((OR) (b) If $x \ge 1$ is the critical region for testing $H_0: \theta = 2$ against the alternative $\theta = 1$ basis of the single observation from the population, $f(x, \theta) = \theta \exp(-\theta x)$, $0 \le x \le 1$	1, on the ∞ ,
	obtain the values of type I and type II errors.	(5)
(c) (i) Let p be the probability that a coin will fall head in a single toss in order to test	
	$H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more the	nan 3
	heads are obtained. Find the probability of type I error and power of the test. (ii) Write down the procedure for Sign test. (OR)	(9+6)
(0	d) State and prove Neyman-Pearson Lemma.	(15)
5	5. (a) Explain the four different classes of stochastic processes.	(5)
	(OR)	
(b) Write short notes on Marko Process and Stationary Process.	(5)
(c)	(i) Explain Birth and Death processes.	
	(ii) If the initial vector $P^{(0)}$ is given, then prove that the <i>n</i> -step transition proba	bilities are
	$P^{(n)} = P^{(0)}P^n$, $n = 1, 2,$	(5+10)
	(OR)	
(d)	State and prove Chapman-Kolmogorov relation in Markov chain. \$\$\$\$\$\$\$	(15)
